A frequency comb or spectral comb is a spectrum made of discrete and regularly spaced spectral lines. In optics, a frequency comb can be generated by certain laser sources.
A number of mechanisms exist for obtaining an optical frequency comb, including periodic modulation (in amplitude and/or phase) of a continuous-wave laser, four-wave mixing in nonlinear media, or stabilization of the pulse train generated by a modelocking. Much work has been devoted to this last mechanism, which was developed around the turn of the 21st century and ultimately led to one half of the Nobel Prize in Physics being shared by John L. Hall and Theodor W. Hänsch in 2005.
The frequency domain representation of a perfect frequency comb is like a Dirac comb, a series of spaced according to
where is an integer, is the comb tooth spacing (equal to the mode-locked laser's repetition rate or, alternatively, the modulation frequency), and is the carrier offset frequency, which is less than .
Combs spanning an octave in frequency (i.e., a factor of two) can be used to directly measure (and correct for drifts in) . Thus, octave-spanning combs can be used to steer a Mirror mount within a carrier–envelope phase-correcting feedback loop. Any mechanism by which the combs' two degrees of freedom ( and ) are stabilized generates a comb that is useful for mapping optical frequencies into the radio frequency for the direct measurement of optical frequency.
The most common lasers used for frequency-comb generation are Ti:sapphire solid-state lasers or Er:fiber lasers with repetition rates typically between 100 MHz and 1 GHz or even going as high as 10 GHz.
Starting with intense light at two or more equally spaced frequencies, this process can generate light at more and more different equally spaced frequencies. For example, if there are a lot of photons at two frequencies , four-wave mixing could generate light at the new frequency . This new frequency would get gradually more intense, and light can subsequently cascade to more and more new frequencies on the same comb.
Therefore, a conceptually simple way to make an optical frequency comb is to take two high-power lasers of slightly different frequency and shine them simultaneously through a photonic-crystal fiber. This creates a frequency comb by four-wave mixing as described above.
In the time domain, while mode-locked lasers almost always emit a series of short pulses, Kerr frequency combs generally do not. "In contrast to mode-locked lasers, microresonator-based frequency combs (also called Kerr combs) can exhibit complex phase relations between modes that do not correspond to the emission of single pulses while remaining highly coherent 8." However, a special sub-type of Kerr frequency comb, in which a "cavity soliton" forms in the microresonator, does emit a series of pulses.
These processes generate new frequencies on the same comb for similar reasons as discussed above.
Measurement of the carrier–envelope offset frequency is usually done with a self-referencing technique, in which the phase of one part of the spectrum is compared to its harmonic. Different possible approaches for carrier–envelope offset phase control were proposed in 1999. The two simplest approaches, which require only one nonlinear optical process, are described in the following.
In the " f − 2 f technique, light at the lower-energy side of the broadened spectrum is doubled using second-harmonic generation (SHG) in a nonlinear crystal, and a heterodyne beat is generated between that and light at the same wavelength on the upper-energy side of the spectrum. This beat signal, detectable with a photodiode, includes a difference-frequency component, which is the carrier–envelope offset frequency.
Conceptually, light at frequency is doubled to , and mixed with light at the very similar frequency to produces a beat signal at frequency In practice, this is not done with a single frequency but with a range of values, but the effect is the same
Alternatively, difference-frequency generation (DFG) can be used. From light at opposite ends of the broadened spectrum the difference frequency is generated in a nonlinear crystal, and a heterodyne beat between this mixing product and light at the same wavelength of the original spectrum is measured. This beat frequency, detectable with a photodiode, is the carrier–envelope offset frequency.
Here, light at frequencies and is mixed to produce light at frequency . This is then mixed with light at frequency to produce a beat frequency of This avoids the need for frequency doubling at the cost of a second optical mixing step. Again, practical implementation uses a range of values, not a single one.
Because the Phase detector, and not the frequency, it is possible to set the frequency to zero and additionally lock the phase, but because the intensity of the laser and this detector is not very stable, and because the whole spectrum beats in phase, one has to lock the phase on a fraction of the repetition rate.
In Ti:sapphire lasers using prisms for dispersion control, the carrier–envelope offset frequency can be controlled by tilting the high reflector mirror at the end of the prism pair. This can be done using piezoelectric transducers.
In high repetition rate Ti:sapphire ring lasers, which often use double-chirped mirrors to control dispersion, modulation of the pump power using an acousto-optic modulator is often used to control the offset frequency. The phase slip depends strongly on the Kerr effect, and by changing the pump power one changes the peak intensity of the laser pulse and thus the size of the Kerr phase shift. This shift is far smaller than 6 rad, so an additional device for coarse adjustment is needed. A pair of wedges, one moving in or out of the intra-cavity laser beam can be used for this purpose.
The breakthrough which led to a practical frequency comb was the development of technology for stabilizing the carrier–envelope offset frequency.
An alternative to stabilizing the carrier–envelope offset frequency is to cancel it completely by use of difference frequency generation (DFG). If the difference frequency of light of opposite ends of a broadened spectrum is generated in a nonlinear crystal, the resulting frequency comb is carrier–envelope offset-free since the two spectral parts contributing to the DFG share the same carrier–envelope offset frequency (CEO frequency). This was first proposed in 1999 and demonstrated in 2011 using an erbium fiber frequency comb at the telecom wavelength.G. Krauss, D. Fehrenbacher, D. Brida, C. Riek, A. Sell, R. Huber, A. Leitenstorfer (2011). "All-passive phase locking of a compact Er:fiber laser system", Opt. Lett., 36, 540. This simple approach has the advantage that no electronic feedback loop is needed as in conventional stabilization techniques. It promises to be more robust and stable against environmental perturbations.T. Fuji, A. Apolonski, F. Krausz (2004). "Self-stabilization of carrier–envelope offset phase by use of difference-frequency generation", Opt. Lett., 29, 632.M. Zimmermann, C. Gohle, R. Holzwarth, T. Udem, T.W. Hänsch (2004). "Optical clockwork with an offset-free difference-frequency comb: accuracy of sum- and difference-frequency generation", Opt. Lett., 29, 310.
There are two distinct applications of this technique. One is the optical clock, where an optical frequency is overlapped with a single tooth of the comb on a photodiode, and a radio frequency is compared to the beat signal, the repetition rate, and the CEO-frequency (carrier–envelope offset). Applications for the frequency-comb technique include optical metrology, frequency-chain generation, optical atomic clocks, high-precision spectroscopy, and more precise GPS technology. Optical frequency comb for dimensional metrology, atomic and molecular spectroscopy, and precise time keeping The other is doing experiments with Ultrashort pulse, like above-threshold ionization, Attophysics, highly efficient nonlinear optics or high-harmonics generation. These can be single pulses, so that no comb exists, and therefore it is not possible to define a carrier–envelope offset frequency, rather the carrier–envelope offset phase is important. A second photodiode can be added to the setup to gather phase and amplitude in a single shot, or difference-frequency generation can be used to even lock the offset on a single-shot basis, albeit with low power efficiency.
Without an actual comb one can look at the phase vs frequency. Without a carrier–envelope offset all frequencies are cosines. This means that all frequencies have the phase zero. The time origin is arbitrary. If a pulse comes at later times, the phase increases linearly with frequency, but still the zero-frequency phase is zero. This phase at zero frequency is the carrier–envelope offset. The second harmonic not only has twice the frequency, but also twice the phase. Thus for a pulse with zero offset the second harmonic of the low-frequency tail is in phase with the fundamental of the high-frequency tail, and otherwise it is not. Spectral phase interferometry for direct electric-field reconstruction (SPIDER) measures how the phase increases with frequency, but it cannot determine the offset, so the name “electric field reconstruction” is a bit misleading.
In recent years, the frequency comb has been garnering interest for astro-comb applications, extending the use of the technique as a spectrographic observational tool in astronomy.
There are other applications that do not need to lock the carrier–envelope offset frequency to a radio-frequency signal. These include, among others, optical communications, the synthesis of optical arbitrary waveforms, spectroscopy (especially dual-comb spectroscopy) or radio-frequency photonics.
On the other hand, optical frequency combs have found new applications in remote sensing. Ranging lidars based on dual comb spectroscopy have been developed, enabling high-resolution range measurements at fast update rates. Optical frequency combs can also be utilized to measure greenhouse gas emissions with great precision. For instance, in 2019, scientists at NIST employed spectroscopy to quantify methane emissions from oil and gas fields . More recently, a greenhouse gas lidar based on electro-optic combs has been successfully demonstrated.
Before the frequency comb, the only way to bridge the gap were the harmonic frequency chains, which doubles radio frequency in 15 stages, reaching a frequency multiplication of . However, those were large and expensive to operate. The frequency comb managed to bridge that gap in one stage.
Theodor W. Hänsch and John L. Hall shared half of the 2005 Nobel Prize in Physics for contributions to the development of laser-based precision spectroscopy, including the optical frequency-comb technique. The other half of the prize was awarded to Roy Glauber.
Also in 2005, the femtosecond comb technique was extended to the extreme ultraviolet range, enabling frequency metrology in that region of the spectrum.
|
|